我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:爱彩网 > 二进制 >

二进制后面的小数点怎么算?

归档日期:07-01       文本归类:二进制      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  个位上的数字的次数是0,十位上的数字的次数是1,......,依次递增,而十分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。

  一直循环,直到达到精度限制才停止(所以,计算机保存的小数一般会有误差,所以在编程中,要想比较两个小数是否相等,只能比较某个精度范围内是否相等。)。这时,十进制的0.65,用二进制就可以表示为:0.1010011。

  只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;

  用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制供人们阅读。

  二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

  然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为2 = 8,然后依次是 2 = 4,2=2, 2 = 1。

  记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。

  把十进制小数乘以2,取其积的整数部分作对应二进制小数的最高位系数k -1 再取积的纯小数部分乘以2,新得积的整数部分又作下一位的系数k -2 ,再取其积的纯小数部分继续乘2,…,直到乘积小数部分为0时停止,

  这时乘积的整数部分是二进制数最低位系数,每次乘积得到的整数序列就是所求的二进制小数.这种方法每次乘以基数取其整数作系数.所以叫乘基取整法.需要指出的是并不是所有十进制小数都能转换成有限位的二进制小数并出现乘积的小数部分0的情况,有时整个换算过程无限进行下去.

  此时可以根据要求并考虑计算机字长,取定长度的位数后四舍五入,这时得到的二进制数是原十进制数的近似值.

  比如0.12就是把0.12不断乘以2并取整数位为转换结果位!过程:0.42*2=0.84 因为个位为0,所以取00.84*2=1.68 因为个位为1,所以取10.68*2=1.36 因为个位为1,所以取1。。。。。。。最后得出0.42的二进制约为 0.011

  二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

  20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号0.1的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。

  把十进制小数乘以2,取其积的整数部分作对应二进制小数的最高位系数k -1 再取积的纯小数部分乘以2,新得积的整数部分又作下一位的系数k -2 ,再取其积的纯小数部分继续乘2,…,直到乘积小数部分为0时停止,

  这时乘积的整数部分是二进制数最低位系数,每次乘积得到的整数序列就是所求的二进制小数。需要指出的是并不是所有十进制小数都能转换成有限位的二进制小数并出现乘积的小数部分0的情况,有时整个换算过程无限进行下去.

  二进制数据也是采用位置计数法,其位权是以2为底的幂。例如二进制数据110.11,逢2进1,其权的大小顺序为2、2、2、

  二进制是一种非常古老的进位制,由于在现代被用于电子计算机中,而旧貌换新 颜变 得身价倍增起来。或许是出于证明我国古代人的伟大智慧这样的好心吧 ,许多人从我国伟大而神秘 的《周易》中发现了二进制。

  当有人发现莱布尼兹曾将二进制与中国《周易》联系在一起时, 就自认为找到了一个更为有力的证据。于是,一个神话就被泡制出来了。

  其大意是:莱布尼兹通过在中国的传教士,得到了八卦图,他领悟到只要把八卦中的阴爻代表0,阳爻代表1, 就可以创立一种新的记数法:二进制。

本文链接:http://pikeducation.com/erjinzhi/443.html